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1. Introduction and Abstract

By a cell we mean either a nonempty closed polyhedral convex

set or a nonempty closed solid ball. Our concern is with solving as

linear or convex quadratic programs special cases of the following

two problems.

Optimal Containment Problem (OCP):

Let .9,' be a finite union of cells and W( a finite intersection

of cells. Find the smallest positive scale s& of &t for which

some translate s& + t contains X.

OC infimum: s
OCP s s~t

subject to: s.? + t D, s> 0.

Optimal Meet Problem (OMP):

Let X and for q = 1, ... , p, be each an intersection
q

of cells. Find the smallest positive scale sX of a for which

some translate sa-+ t meets every &q for q = 1, ... , p.

( infimum: s
OMP s,t

subject to: (sgr+ t) rl q = 1,...,p a > 0.
q

The general OCP and OMP are well beyond our reach but serve as

useful overviews. Depending upon the compositon of the X's and

&t's as unions and intersections of cells and the representation of

the cells we can or cannot formulate the problems as linear or convex

quadratic programs.
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Our initial interest in OCP and OMP originated with "engiheering

design" through interior solution concepts for convex sets, see van der

Vet [ 9 1 and Director and Hachtel C 1]; also see Eaves and Freund [2 .

2. Preliminaries

Most of the notation we use is standard. Let JRn be n-dimen-

sional Euclidean space. By 1iii, we mean the Euclidean norm. x • y

and x o y represent inner and outer product, respectively. Let

e = (i, 1, ... , 1) where its length is dictated by context. We define

inf 0 = + - as usual, but sup 0 = 0 for the purposes of our presen-

tation. By a convex program we mean a program of the form

p x
subject to: gi(x) :S 0 , i =E i, ..

where all f, gi are convex functions, and m is finite. If, in

addition, each gi is affine, f(x) = xQx + q • x, and Q is

positive semi-definite, then we call P a quadratic program. Further-

more, if Q is zero, then we call P a linear program.

Let g be a set in n. We denote by tng(7) the smallest

vector subspace of en for which some translate contains g. We

denote by rec(5) the recession set of 5 , that is, the set

Cz e3.3x( such that x+az e 7 for any a>0)

We also make use of the following variation of Farkas' Lemma.



Lemma: Suppose that the system of inequalities

Ax <b

has a solution and that every solution satisfies cx < d. Then there

exists X > 0 such that A= c and Xb < d.

The manner in which cells are represented is crucial to our

formulations. We assume all cells are in IRn . We define an H-cell

to be a cell of the form

(xjAx <b)

as it is represented by half-spaces; it is assumed (A,b) is given.

A cell of the form

(xlx = UX + V, : e. = 1, X > 0, 0).> O

is defined to be a W-cell as it is a weighting of points; it is assumed

(U,V) is given. Of course, every H-cell can be represented as a W-

cell and vice versa. However, we shall suppose, and typically rightly

so, that the computational burden of the conversion is prohibitive,

see Mattheiss and Rubin [8] for H to W. Thus we shall regard H-

and W-cells as quite distinct. A B-cell is defined to be the ball

(xl l1c - xl :S r)

it is assumed that the center c and radius r > 0 are given.
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Let $ be a cell, and let s > 0 be a scale of 7 and

t a translate. If 7 is an H-cell, (xiAx < b), then

s + t = (xIAx < bs + At). If g is a B-cell, (xi l1c - xli < r),

a + t - (x1 II(sc + t) - xl1< sr). And if 7 is a W-cell,
(x X = UAX + VA , e% = 1,%A>O, g?:_.01, then s9' + t

= xlx = (sU + to e)% + VV, ek = 1, X > 0, p > O) or equivalently

s + t = (xix = t + Ux + vg, ek = s, X>o, A>o ).

To describe special cases of OCP and OMP we shall use notation

as, for example, (HB1 , WB=) which denotes that X is composed of

any finite number of H-cells and one B-cell, and that & or each

&q are composed of any number of W-cells and B-cells but all B-cells

have the same radius. If B is not subscripted by 'Y' or "i"

then any finite number may be employed and the radii may vary. Thus,

again, for example, (HWB, HWB) describes the most general case of

OMP or OCP.

Consider the following three programs

vI = infimum: s

subject to: 1lwi - (sc + t)I + d < sr, i= 1,...,m

Sv2 = infimum: f

(q2) fx
subject to: 11wi - x112 < f, i - 1, ... , m

v= infimum: x. x - a

subject to: w, wi - 2,i  x + a < 0, i = , , m.

(~) a!



i ,i.

Assuming r is non-zero, we show that solving any one yields

solutions to the other two. Let denote nonnegative square root.

Equivalence of (QI) and (Q2): If (;,T) and (s,t) are

feasible for (Ql) with -< s (respectively: S < s), then

(7,7) = ((sr + d) ,c+E) and (f,x) = ((sr + d), sc + t) are

feasible for (Q) with T< f (respectively: "<f). If (fx)

and (f,x) are feasible for (Q2) with T < f (respectively:

Y < f), then (-s,t ((- + d)/r, - -sc) and (s,t) =

((- + d)/r, x - sc) are feasible for (Ql) with < s (respectively:

;<s).

Equivalence of (Q2) and (Q3): If (Y,x) and (f,x) are feasible

for (Q) with f< f (respectively: 7 < f), then (a,x) (;.-f,)

and (ax) = (x x - f, x) are feasible for (Q3) with x - -a

=f < x x - a =f (respectively: x - x - a =T < x x -a = f).

If (Z,x) and (a,x) are feasible for (Q3) with x- -a < x.x - a

(respectively: x- < x x-a), then (f,-) = (7 ;F-a, x)

and (f,x) = (x x -a, x) are feasible for (Q2) with f= x -

< f =x x - a (respectively: = •x W- < f =x x - a).

We thus have the following result

-"7Ag ,



Lemma 2.1 (Equivalence of (Ql) and (Q3)): For r non-zero K

(i) If (s,t) is feasible or optimal for (Ql), then (a,x) =

((sc + t) (sc + t) - (sr - d) 2 , sc + t) is feasible

or optimal for (Q3), respectively.

(ii) If (a,x) is feasible or optimal for (Q3), then (s,t) =

((d + Ix • x - a)/r, x - (d + x • x - a)c/r) is

feasible or optimal for (Qi), respectively. 0

Consequently (Ql) can be solved via the quadratic program

(Q3). Note that (03), and hence (Q), always has a unique optimal

solution.

3. The Optimal Containment Problem (OCP)

Let X be a finite union of cells and "1 be a finite inter-

section of cells. The optimal containment problem can be written as:

J z I = supreimw: s
OCPI s,t

subject to: sR7 + t C ?/ s > 0

or as

= infimum: sOCP2 s,t
subject to: &C s& + t, s > 0.

8
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Our first results concern the equivalence of OCPI and OCP2.

Lemma 3.1 (Equivalence of OCPI and OCP2):

(i) (Solutions) (s,t) is a feasible or optimal solution to

OCPl if and only if (1/s, -t/s) is a feasible or optimal

solution to OCP2.

(ii) (Feasibility) The following are equivalent:

(a) OCPl is feasible

(b) OCP2 is feasible

(c) tng(g.) C tng(oy) and rec(X) C rec(W).

(iii) (Attainment) The following are equivalent:

(a) 0 < z1 < +c (c) OCPI has an optimum

(b) 0 < z . < + C (d) OCP2 has an optimum.

(iv) (Non-attainment) The following are equivalent:

(a) z= + C

(b) z2 =0

(c) X + t C rec(w) for some translate t.

For a specific realization of OCPl or OCP2, X and

will be given in the forms



= U H h] U[U Wi uu P]

e)[ Hk]n n W'e r) n B1
kep lea mET

where H (xlA(.)x < b(), W() (xlx = U(.)% + V(.)V, eX - 1,

X>0, > 0), and B()-- (xI Il(.)- xl < r(.)). For a given set

H() (xlA(.)X < b(.), we define a(.) to be the column vector

th thwhose q component is the (Euclidean) norm of the q row of A(.

We begin with case (HWtB, H) of 0CP which corresponds to

a= and T that is, X is a union of any finite number of

H-, W-, and B- cells and 5( is an intersection of H-cells.

Case (00B, H) of OCP is a linear program

We treat the optimal containment problem (HWB, H) through

OCP2. The formulation as a linear program is

z 2 = minimum: s
s,t,A

subject to: AAh= Ak h e a, k e p

Ahkbh  bS +Akt h e , k e p

AkUi<bks+ Akt i , k p

A k(V ) < o 01 ke

A k C + akr j _b ks + Akt J 7., k E P

Ahk> 0 h a, k e P

s>0

10



Note that case (BI, H) of OCP, a special case of (HWB, H), is

the well-known problem of finding the largest ball inscribed in an

H-cell, and has been part of the folklore of linear programming for

over a decade.

Case (W, Mf) of OCP is a linear program

Formulated through OCPI, we have:

zI  maximum :s

s,t,A,iT,fl

subject to: sU. + toe =UA + Vit a

Vi =V~i i a, V

AkI(sU i + toe) < bkoe e k e p

Ak(V i ) _  ck

eAiL = e, Ail > 0, ffil 0, ,, 0 1 e I, e a

s>O.

Case (BI, B_) of OCP is a quadratic program

Let (c,r) be the given center and radius of the ball &.

Treating the optimal containment problem through OCP1, we have:

z = maximum: s
s,t

subject to: 11ic (sc + t)1 + sr < rn n e T

s>O.

11
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If O f , i.e., the intersection of the B is not empty, then

m

the constraint s > 0 is superfluous, and can be dropped. Since all

rn are equal, the above program is seen to be an instance of (Q1) and

hence can be solved via the quadratic program (Q3). Note that if

the optimal solution to the program (Q3) returns a negative value

of sa, then 0 - *. A variation of this problem was first shown

to be a quadratic program by Gale [4 ].

Case (B=, B1) of OCP is a quadratic program

Here we let (c,r) be the given center and radius of the ball

(. Formulated through OCP2, the optimal containment problem is

written as

z = minimum: s
s~t

subject to: Ilcj - (sc + t)JI + r. < sr j

s>0.

Note that the constraint s > 0 is superfluous, and can be omitted.

As this program is a realization of (Ql), it is solvable as the

quadratic program (Q3) for r > 0.

The special case of (B,B ) where all r = 0 is the problem
=1 j

of finding the smallest ball covering the points cj J c and has

been treated by Elzinga and Hearn [3] and Kuhn (71.

12
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The case (W, BI ) of OCP is a quadratic program

(W, BI ) of OCP is a special case of (B=, BI ) just discussed

when rec(a') = U ) (else OCP is infeasible), since all Vi = 0 and

each column of the U, can be considered as the center of a B-cell

with radius zero. Thus (W, BI) of OCP is solvable through the

quadratic program (Q3).

Other cases of OCP

Cases (WB, HB) and (W, HWB) of OCP can be formulated as

convex programs using the logic already employed; however, we have been

unable to formulate either case as a quadratic or linear program. As

regards all other cases of OCP, we are convinced that their formu-

lation as a convex program, much less a quadratic or linear program,

cannot be accomplished. The reason for this is that the problem of

testing C: &, where either (i) X is an H-cell and & is a

W-cell, (ii) 2 is an H-cell and is a B-cell, or (iii) R" is

a B-cell and / is a W-cell, appears to be intractable without

conversion of the polyhedra from H-cell to W-cell or vice versa.

4. The Optimal Meet Problem (OMP)

Let R' and &q, q = 1, ... , p, each be a finite intersection

of cells. The optimal meet problem can be written as:

Fvi = infimum: a

OM1 subject to: (sr + t) n 1 q=l, ... ,p,I q
L s>0

or

13



v2  supremum: as~t

(XMF2 subject to: a r) (s &jq + t) q =,..,p,

I s>O.

The followirg result concern the equivalence of OMP1 and 0tY2.

Lemma 4.1 (Equivalence of OMPI and 0MP2):

(i) (Solutions) (s,t) is a feasible or optimal solution to

OMP1 if and only if (1/a, -t/s) is a feasible or optimal

solution to 0MP2.

(ii) (Feasibility) The following are equivalent:

(a) OMPI is feasible

(b) OMP2 is feasible

(c) For some translate t, (t + tng(d4)) fl iq ,

q -1, ... , p.

(iii) (Attainment) The following are equivalent:

(a) 0 < v I <0 (c) OMPI has an optimum

(b) 0 < v2 < c (d) OP2 has an opti mum.

(iv) (Non-attainment) The following are equivalent:

(a) v - 0

(b) v2  +

(c) For some translate t, (rec(.X) + t) n rq ' 0,

q = i, ... , p

14
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For a specific realization of OPI or OMP2, a' and &q

will be given in the form:

n' HI, I~ n~ n W ] f) r)(r B
hea ici JC7

(. (n H%]t,( n w,] [ r) B I q l,...,p,

qq q q

where HI,,) , W(.) and B(.) are as in section 3. Our solvable cases

are as follows.

Case (HW, ..W) of OMP is a linear program

Treated through OP1, case (hV, HW) is the linear program:

v 1 - minizmm : a
s,t xX~iL

subject to: Ahx < bhs + Aht h e a, q

Ak qx q< b kq C Pq, q ,l...,p
q - q

Xq -t + U I xiq + VI iiq i E ,q - 1,-.-,p

Xq Uj xq + V q Jq q , q -l, .. ,

e% = , > 0 a q - ... p
eklq~ ~ qI i- q

eXE  1,)..I > OL > 0 £q E , q = ,...,p
q q q

6>0.

15



Case (B1 , B1.) of OUP is a quadratic program

This is the case where each 4.i is a ball of given center Cq
q .e

and radius r with rI = • = r > 0. Let X be the ball with
qq

center c and positive radius r, and we proceed through OMPI.

The formulation is

v1 = minimum: s
s't

subJect to: Jcq - (sc + t)If < sr + r q

q = 1, ... , pL

q q

s>.

I1q = * (otherwise OMP does not attain its minimum), then

q=l

the constraint s > 0 is superfluous and can be omitted. Furthermore,

since all rq are equal, the above program is an instance of (Qi)

and hence can be solved via the quadratic program (Q3).

Other cases of 01v

Note that the most general case of OMP, namely (HWB, HWB),

can be formulated as a convex program using the logic employed herein.

However, we have been unable to formulate any case of OMP other than

the above two cases as a quadratic or linear program.

16
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5. Remark

Our final remark concerns the interrelated issues of computational

complexity, the conversion of H- to W-cells and vice versa, and our

division of problems solvable as quadratic or linear programs from

other convex programs. In (5] and (61, it is shown that linear and

(convex) quadratic programs are solvable in polynomial time. The

conversion of an H- to W-cell, or vice versa, is an exponential problem.

To see this, consider the sets W L (x e RnI llxll- < 1) and

( (x e Rnl lxl l 1]. IF , as an H-cell, can be represented by

2n halfspaces, but as a W-cell it requires the enumeration of at

least 2n (extreme) points. C , as a W-cell, can be represented

by 2n (extreme) points, but as an H-cell it requires the enumeration

of at least 2n halfspaces. We thus see that our distinction of

H-cells and W-cells as different entities is consistent from the

standpoint of the solvability of the quadratic and linear programs

contained herein.
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